MR,QPLS,PEM,NN

MR: Easily found out miss input data. Meaning parameter is clear. Reverse design.

- QPLS: Improve MR. But descriptors are tend to burst out. (Two, three, more term interactions) Effective selection of descriptors are needed. PEM: Prediction ability is very high. No over-training
- PEM: Prediction ability is very high. No over-training. Extrapolation ability.
- NN: After check miss input data by MR, Check data type carefully (mountain type or something). Descriptors are enough and minimum. Then finally build by NN.

Ionic Liquids as Reaction Solvent

Journal of Fluorine Chemistry127 (2006) 29-35

Ionic Liquid EMI-F(HF)_{2.3}

Yield of reaction

Fluorination of olefin and epoxide

name	yield	time	eq	NIS	NBS	NCS	LUMO	Chr1-sui	Chr2-Firu	
C10-3	90	3	2	1	0	0	1.156	-0.1663	-0.1379	
isoC10	91	1	2	1	0	0	1.097	-0.171	-0.1146	Attach to Olefin
cHex-1	95	1	2	1	0	0	1.17	-0.1488	-0.1488	
MeC8EPO	28	24	0.1	0	0	0	2.254	-0.0073	0.0212	
DiBuEPO	7	48	0.1	0	0	0	2.338	-0.0001	-0.0001	Attach to Epoxide
C8EPO	0	120	0.1	0	0	0	2.289	-0.0086	0.0005	

-179.253+100.19483*(POWER((time*0.00000109+1),-1080.137)* POWER((eq*1245.307+1),0.156)* POWER((NIS*0.394+NBS*0.399+NCS*0.256+1),1.396)* POWER((LUMO*8.190+1),0.00796)* POWER((charge*-15.988+1),-0.458)* POWER((charge(Crowd)*-10.285+1),-0.165))

Fluorination of olefin and epoxide

Although the charge on carbon of olefin and epoxy are very different, they can be treated in a unified manner.

Calculation of LUMO and charge with MOPAC. We can also provide information on the yield of raw materials not found in the literature!

The reaction time has little effect on the yield rate.

-179.253+100.19483*(POWER((Time*0.00000109+1),-1080.137)* POWER((equivalent *1245.307+1),0.156)* POWER((NIS*0.394+NBS*0.399+NCS*0.256+1),1.396)* POWER((LUMO*8.190+1),0.00796)* POWER((Charge Vacant*-15.988+1),-0.458)* POWER((Charge crowded*-10.285+1),-0.165))

As a common sense chemist.

name	yield	time	eq	NIS	NBS	NCS	LUMO	Chr1-sui	Chr2-Firu
C10-3	90	3	2	1	0	0	1.156	-0.1663	-0.1379
isoC10	91	1	2	1	0	0	1.097	-0.171	-0.1146
cHex-1	95	1	2	1	0	0	1.17	-0.1488	-0.1488
MeC8EPO	28	24	0.1	0	0	0	2.254	-0.0073	0.0212
DiBuEPO	7	48	0.1	0	0	0	2.338	-0.0001	-0.0001
C8EPO	0	120	0.1	0	0	0	2.289	-0.0086	0.0005

0% yield after 120 hours of reaction

If we include this Exp. in the analysis, we get the insane answer that the yield does not depend on reaction time.

Common Sense for chemist

If 0% at 120hr, 0% at 1hr (If it is a sequential reaction, it will be destroyed if the time is increased.)

There is no need for a yield of more than 100%.

There are no byproducts below 0%.

You can't just look at the analysis results in R²! The chemo part of chemo-informatics is important

Interpreting the results by taking the error

Which model tells the truth?

Minimum absolute error value

We consider it as a sequential reaction in which the product is broken down. If you are trying to discuss something with a high yield rate in the upper right, this is what you want to do.

(% of absolute error) Minimum

This model is the best for this case. Easy to discuss what doesn't fit.

least-squares error

This is usually used for neural nets or whatever.

It's perfect for a paper.

(% of error) squared minimum If you want to have an average discussion around the origin, this is the one.