# JP31 ニューラルネットワークを用いたフロン代替物 質の物性推算、および、新規化合物の逆設計

#### 山本博志

1999年 情報化学討論会

新エネルギー・産業技術総合開発機構の委託研究の一環で行われた







含フッ素化合物のデーターベースの作成とその分類









構造のみから推算する場合、原子団寄与法で、Tb、Tc、Pc、 Vcを求め、次に対応状態原理で各種物性値を推算する。

特に精度を必要とする場合にはニューラルネットワーク法

Critical Temperature Estimation by Neural Networks

Critical Pressure Estimation by Neural networks

Critical Volume Estimation by Neural Networks





900 800 (文 700 型 600 期 500 300 200 200 300 400 500 600 700 800 900

y = 3.114 + 0.99623x R= 0.99809

臨界温度実験値 (K)

再構築学習法NNによる臨界温度推算

Lydersen 式による臨界温度推算



Lydersen 式による臨界圧力推算



再構築学習法NNによる臨界圧力推算



y = -0.92452 + 0.99908x R= 0.99854 700 600 9 9 400 400 200 100 200 300 400 500 600 700 臨界体積実験値 (cm3/g)

再構築学習法NNによる臨界体積推算

Lydersen 式による臨界体積推算

#### 再構築学習法NNによる沸点推算



再構築学習法ニューラルネットワーク(NN) 結合荷重行列模式図

#### 再構築学習法NNによる表面張力推算



表面張力推算のNN (線の太さは重みの大きさを表す)

#### Surface Tension Estimation by Neural Networks



Obtained Neural Networks (Line width means size of Weight Matrix)

#### Heat of Vaporization Estimation by Neural Networks



Obtained Neural Networks (Line width means size of Weight Matrix)

## 再構築学習法NNによる密度推算



密度推算のニューラルネット (線の太さは重みの大きさを表す) Density estimation by Neural Networks



Obtained Neural Networks (Line width means size of weight matrix)

#### 再構築学習法NNによる蒸発潜熱推算



蒸発潜熱推算のNN (線の太さは重みの大きさを表す)

## JOBACK法による沸点推算

#### JOBACK 加算因子



(R):環状基 (AR):芳香族

## Macleod-Sugden式による表面張力推算



## Pitzer-Carruth-Kobayashi法による 蒸発潜熱推算







気体熱伝導度は発泡剤と して用いるとき最も重要 な物性値である。

測定例は非常

に少ない

| 試料             | 熱伝導度測定値 | 推算值   | 誤差                         |
|----------------|---------|-------|----------------------------|
|                | mW/mK   | mW/mK | (%)                        |
| CHF2CF2OCH2CF3 | 12.8    | 12.72 | -<br>0.62500000<br>0000001 |
| CHF2CF2OCH3    | 13.79   | -     |                            |
| CH2FCF2OCHF2   | 13.46   | 13.2  | -1.932                     |
| CF3CF2OCF2CHF2 | 13.03   | 12.8  | -1.765                     |
| CF3CF2CF2OCH3  | 13.09   | 12.86 | -1.757                     |
| CF3CHFOCF3     | 13.7    | 13.5  | -1.460                     |
| (CF3)2CFOCH3   | 13.18   | 13.1  | -0.607                     |
| CF3CH2OCHF2    | 13.88   | 13.75 | -0.937                     |
| CF3CF2OCH3     | 13.94   | 13.95 | 0.072                      |



| CCI2FCCIF<br>CFC-113         | 2       | CCIF <sub>2</sub><br>HCF | 2 <b>CF<sub>2</sub>CH</b><br>C-225cb |         | ?       |                      |
|------------------------------|---------|--------------------------|--------------------------------------|---------|---------|----------------------|
|                              |         |                          |                                      |         |         |                      |
| Properties                   |         | Exp.                     | Calc.                                | Exp.    | Calc.   |                      |
| Boiling Point                | к       | 320.70                   | 320.40                               | 329.30  | 330.10  |                      |
| Freezing Point               | к       |                          | 185.51                               |         | 144.46  |                      |
| Density                      | kg/m3   |                          | 1569.37                              | 1560.00 | 1553.84 |                      |
| Heat of Formation            | kJ/kg   |                          | -3.68                                |         | -5.25   |                      |
| Critical Temperature         | к       | 487.20                   | 485.56                               | 485.00  | 486.20  |                      |
| Critical Pressure            | kPa     |                          | 3327                                 | 2860    | 2917    | (欲しい物性から)<br>満に分子構造を |
| Critical Volume              | m3/kg   | 0.00176                  | 0.00176                              | 0.0018  | 0.00183 | 決められないか?             |
| Heat Capacity                | kJ/kg∙K |                          | 0.81                                 |         | 1.08    |                      |
| Vapor Pressure(at 294K)      | kPa     | 37.92                    | 38.47                                | 18.34   | 31.97   |                      |
| Thermal Conductivity Gas     | mW/mK   | 7.66                     | 8.41                                 | 9.27    | 9.29    |                      |
| Thermal Conductivity Liq.    | mW/mK   | 73.28                    | 73.30                                | 58.23   | 52.32   | ☆☆=ル=+               |
| Heat of Vaporization (at BP) | kJ/kg   | 151.10                   | 143.55                               | 171.66  | 137.32  | 建設計                  |
| Surface Tension              | mN/m    | 17.75                    | 17.05                                | 16.70   | 15.70   |                      |
| Solubility Parameter         |         | 7.3                      | 6.8                                  |         | 6.8     |                      |



| Reverse Engineering 条件設定画面 |                                              |  |  |  |
|----------------------------|----------------------------------------------|--|--|--|
|                            | A Basic Application                          |  |  |  |
|                            | Solvent Searching System (for Halogen)       |  |  |  |
|                            | Carbon Chain 2 – 3 (max 8)                   |  |  |  |
|                            | Boiling Point 50 C +- 8.0 C                  |  |  |  |
|                            | Include 🗹 Cl                                 |  |  |  |
|                            | Type of Molecule                             |  |  |  |
|                            | Searching Option                             |  |  |  |
|                            | Surface Tension 16.0 dyne +- $3.0$           |  |  |  |
|                            | ✓ SP value 7.0 cal/cm3 <sup>1/2</sup> +- 2.0 |  |  |  |
|                            | Search.                                      |  |  |  |
|                            | ゲン系溶剤を条件に合わせてサーチする                           |  |  |  |
|                            | CFC-113 相当物性を持つ化合<br>物が18化合物サーチされた。          |  |  |  |





# 分子構造が決まれば 熱化学的物性は推算が可能

未知のハロゲン化合物でも実際に 合成する前からその物性を予測

> 「高価な試薬、危険な合成低減<sup>、</sup> コストの削減、開発期間短縮

コンピューター上での コンビナトリアル・ケミストリー

目標とする化合物と類似機能を持つ 化合物の探索研究に有効