HSP50 Conference 2017

New Directions in HSP Part 1 Splitting δ_D

HSPiP Dr. Hiroshi Yamamoto 2017.4.5

H. Yamamoto, personal History

Prime Number

Can you divide Prime Number, 2017 ? My answer is always "depend on". 2017 = (44 - 9i)*(44 + 9i) Properties Estimation depend on Dataset. Hydrocarbons' Equation applicability for XX.

How we can serve 2017 version of Hansen Solubility Parameters?

TABLE 1.1

Group Contributions to Partial Solubility Parameters

Functional	Molar Volume, ^a ∆V (cm ³ /mol)		London Parameter, $\Delta V \delta_D^2$ (cal/mol)		P 2	olar Paramete \V 8 ² P (cal/mo	Electron Tran $\Delta V \delta_{H}^{2}$	sfer Parameter, cal/mol)	Total Parameter, ^a $\Delta V \delta^2$ (cal/mol)			
Group	Aliphatic	Aromatic ^b	Alkane	Cyclo	Aromatic	Alkane	Cyclo	Aromatic	Aliphatic	Aromatic	Aliphatic	Aromatic
CH 3	33.5	Same	1,125	Same	Same	0	0	0	0	0	1,125	Same
CH ₂ <	16.1	Same	1,180	Same	Same	0	0	0	0	0	1,180	Same
-CH<	-1.0	Same	820	Same	Same	0	0	0	0	0	820	Same
>C<	-19.2	Same	350	Same	Same	0	0	0	0	0	350	Same
$CH_2 = olefin$	28.5	Same	850 ± 100	?	?	25 ± 10	?	?	180 ± 75	?	1,030	Same
-CH = olefin	13.5	Same	875 ± 100	?	?	18 ± 5	?	?	180 ± 75	?	1,030	Same
>C = olefin	-5.5	Same	800 ± 100	?	?	60 ± 10	?	?	180 ± 75	?	1,030	Same
Phenyl-	_	71.4	_	_	7,530	_	_	50 ± 25	_	50 ± 50°	_	7630
C-5 ring (saturated)	16	_	—	250	_	0	0	_	0	_	250	-
C-6 ring	16	Same	_	250	250	0	0	0	0	0	250	250
-F	18.0	22.0	0	0	0	$1,000 \pm 150$?	700 ± 100	0	0	1,000	800 ^b
=F2 twinf	40.0	48.0	0	0	0	700 ± 250 ^c	?	500 ± 250 [€]	0	0	1,700	1,360
=F3 triplet	66.0	78.0	0	0	0	?	?	?	0	0	1,650	1,315
-C1	24.0	28.0	$1,400 \pm 100$?	$1,300 \pm 100$	$1,250 \pm 100$	$1,450 \pm 100$	800 ± 100	100 ± 20°	Same	2,760	2,200
=Cl ₂ twin ^f	52.0	60.0	$3,650 \pm 160$?	3,100 ± 175°	800 ± 150	?	400 ± 150°	165 ± 10°	$180 \pm 10^{\circ}$	4,600	3,670°
=Cl ₃ triplet ^f	81.9	73.9	4,750 ± 300°	?	?	300 ± 100	?	?	350 ± 250°	?	5,400	4,300⊧
-Br	30.0	34.0	1,950 ± 300°	$1,500 \pm 175$	$1,650 \pm 140$	$1,250 \pm 100$	$1,700 \pm 150$	800 ± 100	500 ± 100	500 ± 100	3,700	2,960°
=Br ₂ twin ^f	62.0	70.0	4,300 ± 300°	?	3,500 ± 300°	800 ± 250°	?	400 ± 150°	825 ± 200°	800 ± 250°	5,900	4,700 ^b
=Br ₃ triplet ^f	97.2	109.2	5,800 ± 400°	?	?	350 ± 150°	?	?	1,500 ± 300°	?	7,650	6,100 ^b
-I	31.5	35.5	2,350 ± 250°	2,200 ± 250°	2,000 ± 250 ^e	$1,250 \pm 100$	$1,350 \pm 100$	575 ± 100	$1,000 \pm 200^{\circ}$	$1,000 \pm 200^{\circ}$	4,550	3,600 ^b
=I2 twine	66.6	74.6	5,500 ± 300°	?	4,200 ± 300 ^e	800 ± 250 ^c	?	400 ± 150 ^e	1,650 ± 250°	1,800 ± 250°	8,000	6,400
=I ₃ triplet ^e	111.0	123.0	?	?	?	?	?	?	?	?	11,700	9,350°
-O- ether	3.8	Same	0	0	0	500 ± 150	600 ± 150	450 ± 150	450 ± 25	$1,200 \pm 100$	800	$(1,650 \pm 150)$
>CO ketone	10.8	Same	e	$2,350 \pm 400$	2,800 ± 325	(15, 000 ± 7%)/V	$1,000 \pm 300$	950 ± 300	800 ± 250^{d}	400 ± 125°	4,150	Same
-CHO	(23.2)	(31.4)	950 ± 300	?	550 ± 275	$2,100 \pm 200$	3,000 ± 500	$2,750 \pm 200$	$1,000 \pm 200$	750 ± 150	(4,050)	Same
-COO-ester	18.0	Same		?	r	(56,000 ± 12%)/V	?	$(338,000 \pm 10\%)/V$	$1,250 \pm 150$	475 ± 100°	4,300	Same
-COOH	28.5	Same	3,350 ± 300	3,550 ± 250	3,600 ± 400	500 ± 150	300 ± 50	750 ± 350	2,750 ± 250	2,250 ± 250°	6,600	Same

Depend on what?

CALCULATING δ_{D}

- HOMOMORPH CONCEPT ($\mathbf{E}_{D} = \mathbf{E}$ FOR SIMILAR HYDROCARBON
- CORRESPONDING STATE THEORY (CST)
- CST FIGURE FOR E_D FOR EACH OF ALIPHATIC, CYCLOALIPHATIC, OR AROMATIC STRUCTURE

 E_{D} versus V for $T_{r} = T_{298.15}/T_{CRITICAL}$

FIGURE FOR E_D FOR ALIPHATIC HYDROCARBONS

2 other charts exist for Cycloalkanes and Aromatics.

The reason why 3 charts exist

Different curves between Tr and H_v

We can't apply Chart Method for more complicated molecules.

CALCULATING δ_{D} in HSPiP $\delta_{D} = (n_{D}-0.784)/0.0395$ n_D: Refractive Index

δ_P - Final Result Adjusted from Trial and Error Values Böttcher Equation, cal/cm³

$$\delta_{P}^{2} = \frac{12108}{V^{2}} \frac{\varepsilon - 1}{2\varepsilon + n_{D}^{2}} (n_{D}^{2} + 2) \mu^{2}$$

When constants not available Beerbower Equation, MPa^{1/2}

$$\delta_{\rm P} = 37.4(\mu)/V^{\frac{1}{2}}$$

Later Functional Group Contributions

Evaluation of δ_P

Böttcher Equation

 $\delta_P^2 = \frac{12108}{V^2} \frac{\varepsilon - 1}{2\varepsilon + n_D^2} \left(n_D^2 + 2 \right) \mu^2$

Beerbower Equation

$$\delta_{\rm P} = 37.4(\mu)/V^{2}$$

If the Dipole Moment (μ) is very small δ_{P} become 0

$$\underset{c_{1}}{\overset{c_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\\{c_{1}}{\\{c_{1}}{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\atopc_{1}}{\atopc_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\atopc_{1}}{\atopc_{1}}{\atopc_{1}}{\atopc_{1}}{\underset{c_{1}}{\atopc_{1}}{\atopc_{1}{\\c_{1}}{\atopc_{1}}{\atopc_{1}}{\atopc_{1}}{\atopc_{1}}{\\c_{1}}{\atopc_{1}}{\atopc_{1}}{\atopc_{1}{c$$

Comparison of 2 Equations

Hydrogen Bonding Paramete

them by hand via analogy.

 $\delta_{\rm H}$ – Final Result (What was left over)

$$E_{H} = E_{T} - E_{D} - E_{P}$$
$$\delta_{H} = (E_{H}/V)^{\frac{1}{2}}$$

CHECK where possible that: $\delta_T^2 = \delta_D^2 + \delta_P^2 + \delta_H^2$

Later Functional Group Contributions for E_H

We need Heat of Vaporization @25°C(E_T) before calculating δ_H

CORRESPONDING STATE THEORY (CST)

Pitzer-Carruth-Kobayashi Method

$$\frac{\Delta Hv}{RTc} = 7.08(1 - \text{Tr})^{0.354} + 10.95 \omega (1 - \text{Tr})^{0.456}$$

 ΔHv : Heat of Vaporization

Tr : Reduced Temperature (T / Tc)

 ω : Acentric factor

R : Gas constant

Hv(Lit.) [KJ/mol]

If we have Tc and ω , we can calculate H_v @25°C with PCK method

Functional Group Contribution Method

Yamamoto Molecular Break to Functional Group Algorithm

Y-MB is implemented in HSPiP

Property =
$$\sum_{i=1}^{172} \text{factor}_i * FG_i$$

Properties: δ_D , δ_P , δ_H , Antoine A, B, C BP, MP, Tc, Pc, Vc, n_D , MVol H_v , logKow, logS so on.

	File Dist. Diff. Adh./Visc. Force Fit Teas HPLC IGC GC Temp. Evap. FindMols Grid DPC PowerTools Help								Cha	pter4				
	No.	No. Solvent		δP	δH	Score RED M		MVol	^		^	P O DI	Y QSAR	Ē
	7 Acetone		15.5 10.4 7		7	1 0.72		73.8			Donor/Accept	or 🔲 Genetic	Algorithn	
	92	1-Butanol	16	5.7	15.8	0	1.229	92				MVol Correcti	on 📃 ESC Ale	rt .
	115	Gamma Butyrolactone	18	16.6	7.4	1	0.770	/6.5				Sphere Rad. C	hk 🔄 Show Se	lected
DIY													- 0	×
Y-MB Stefanis-Panayiotou Van Krevelen Hoy Numbers Polymers HSE Azeotropes/VP Solubility Miscibility Surfactants														
SMILES or InChi input 2 Semilor 8 2 Val Ello Convert Full data to Clipboard No Header														
	00000	i Onne	34	: 1 1012		i ne ot	mon				-	7		ঁত
ôD [15.8	Formula C4H10O									->SO	MP ° C	-78.1	
د ۵۳ [64	Bu 1									-00	BP°C	116.3	
ôH [14.0	OH:1									~	BI	1 200	
8 HD/4	14.0	Database match(es) 92 1-Butanol	6 5	7 15	.8 11.	1/10.1						Deveite	1.030	
0110/H	11.1210.1	All Data										Density	0.798	
0 101	22.6	δP MPage (13.83 1.39								~	MVol	92.9	
Environm	ental	3D Molecule Viewer - I	No 3D File L	oaded								MW/t	74.1	
Antoine A	7.328											Quality		
Antoine B	1327.4											Uvality	1.267	
Antoine C	191.8											MCI	2.414	
VP @25°C	16.03											HAC	5	
VP @* 025	16.03											QMin	-0.22	
RER [34.2											QMax	0.126	
Flash point	32					2								
η@25°C	1.4												and 3D	
Log(OHR)	-11.08													
L												Re	set 3D	
le (Keu)												⊻ No	SMILES	
	0.9											Bond	ito valence	
log(3)	1.17											Bonu	• •	

Y-MB Estimation(Critical Properties)

Y-MB Estimation (Environmental Properties)

Y-MB Estimation (Other properties)

Developing 2017 version of Functional Group Contribution for HSP.

 $FG[\delta_{D}, \delta_{P}, \delta_{H}]$ Vol

Can't determine δ_D coefficients for each Functional Group!

 $\Sigma FGsFactor*FGsNumber+Const.$

Rare Gases (Noble Gases)

There is very good correlation between Molecular Weight and BP

	Atomic #	Atomic mass	Boiling point (K)	Melting point (K)	1 st Ionization (E/kJ mol ⁻¹)	Density (g/dm³)	Atomic radius (pm)
He	2	4.003	4.216	0.95	2372.3	0.1786	31
Ne	10	20.18	27.1	24.7	2080.6	0.9002	38
Ar	18	39.948	87.29	83.6	1520.4	1.7818	71
Kr	36	83.3	120.85	115.8	1350.7	3.708	88
Xe	54	131.29	166.1	161.7	1170.4	5.851	108
Rn	86	222.1	211.5	202.2	1037.1	9.97	120

We know that Rare Gases become liquid only with the Weak Van Del Waals(VDW) Force.

- Helium 1s²
- Neon [He] 2s² 2p⁶
- Argon [Ne] 3s² 3p⁶
- Krypton [Ar] 3d¹⁰ 4s² 4p⁶
- Xenon [Kr] 4d¹⁰ 5s² 5p⁶
- Radon [Xe] 4f¹⁴ 5d¹⁰ 6s² 6p⁶

Table 1: Trends within Group 18

Rare Gases & Fluorinated Compounds

The perfluoro compounds become liquid with only weak VDW force.

+Hydrocarbons

Even same molecular weight, hydrocarbons need much higher boiling point.

Change Axes

 $\delta_{\text{Dvdw}} = (9.0463 \text{ MW}^{0.5} + 28.512)/(\text{MVol})^{0.5}$

New definition $\delta_D^2 = \delta_{Dvdw}^2 + \delta_{Dfg}^2$

 $\delta_{\scriptscriptstyle D}$ for Functional Group

Split δD to δ_{Dvdw} and δ_{Dfg}

2017 version of Functional Group Contribution for HSP. $d_D = (d_{Dvdw}^2 + d_{Dfg}^2)^{0.5}$

 $FG[(\delta_{Dvdw}, \delta_{Dfg}), \delta_{P}, \delta_{H}]$ Vol

COO [(14.5,15.2), 8.1, 10.8] 37.02

Me [(11.8, 7.5), 0.7, 0.1] 28.85

Bu [(10.0,12.3), 0, 0] 94.25

[(10.7,14.0), 0, 0] 72.2

HSP FG parameters

Label	dD	dDfg	dP	dH	CosVol	MW	Label	dD	dDfg	dP	dH	CosVol	MW
CH3	12.9	7.5	0.7	0.1	28.85	15.034	NH	20.7	17.8	9.7	14.9	16.53	15.018
CH2	16.4	14.3	1.5	0.9	22.05	14.026	NH_R	19. 0	15.5	14.1	18.3	16.41	15.018
CH2_R	17.0	13.7	1.7	1.9	21.65	14.026	NH@Ar	30.7	28.7	16.6	23.6	15.08	15.018
CH2:	11.0	0.0	3.2	4.2	26.50	14.026	N	25.2	24.7	9.3	11.9	10.27	14.01
СН	21.2	21.6	0.1	0.0	14.67	13.018	N_R	25.0	22.2	7.6	19.5	9.26	14.01
CH_R	19.1	18.0	0.0	0.0	14.57	13.018	N@Ar	30.3	31.3	0.0	16.4	12.07	14.01
CH:	19.0	16.8	0.1	0.1	18.26	13.018	C#N	17.0	12.5	21.8	9.6	34.12	26.02
CH:_R	17.3	14.0	2.3	5.3	17.95	13.018	C#N@Ar	18.9	14.8	20.8	4.4	34.00	26.02
CH:_reso	18.3	14.9	0.1	4.8	17.84	13.018	NO2	17.9	12.4	20.6	6.9	40.26	46.01
#CH	14.2	9.2	3.6	4.1	24.50	13.018	NO2@Ar	19.3	14.0	15.7	7.6	38.78	46.01
С	33.3	37.2	0.1	5.3	5.48	12.01	SH	19.1	15.0	9.0	9.7	36.40	33.078
C_R	31.7	32.5	0.1	0.0	6.58	12.01	SH@Ar	22.6	19.0	3.1	9.1	37.17	33.078
C :	26.0	26.6	0.0	0.0	10.42	12.01	S	23.4	20.6	7.0	6.9	28.33	32.07
C:_R	25.4	25.3	0.1	4.7	10.64	12.01	S_R	23.1	19. 2	11.4	11.6	28.15	32.07
C:_reso	24.5	24.0	1.0	0.1	10.12	12.01	S@Ar	27.2	24.9	9.7	0.0	28.20	32.07
C:_rrr	25.3	24.1	0.1	1.1	10.92	12.01	S:O	23.8	20.5	21.0	9.4	38.82	48.07
#C	19.6	16.7	7.7	6.6	14.87	12.01	NHCO	21.3	17. 2	23.1	17.5	42.13	43.028
ОН	18.4	11.3	16.6	36.6	18.05	17.008	NHCO_R	23.7	20.6	24.0	13.1	42.67	43.028
2_OH	18.6	12.6	15.0	32.2	18.29	17.008	NCO	24.4	21.8	22.3	13.6	34.89	42.02
3_OH	19.8	15.7	12.4	25.3	18.58	17.008	NCO_R	22.6	19.7	19.2	12.5	36.30	42.02
OH@Ar	17.3	10.7	13.5	28.8	18.84	17.008	0000	17.6	13.5	10.9	9.6	47.85	60.01
0	17.8	12.1	12.2	10.9	11.97	16	OCOO_R	19.5	14.5	29.0	10.3	50.20	60.01
O_R	18.0	11.7	13.1	12.4	12.06	16	CF3	10.7	0.0	1.8	0.0	52.73	69.01
O@Ar	22.0	18.0	16.1	16.7	11.30	16	CCI3	17.9	13.2	0.0	0.0	94.36	118.36
C:O	20.8	17.4	14.0	9.6	25.69	28.01	CF2	13.4	3.5	0.0	1.1	36.24	50.01
C:O_R	22.4	18.9	15.1	8.9	26.16	28.01	CCI2	18.8	13.6	6.6	4.3	62.76	82.91
C:O@Ar	23.3	19.9	16.8	7.7	25.54	28.01	CF	15.9	7.8	0.0	0.0	21.27	31.01
HCO	17.1	12.4	14.5	10.4	34.57	29.018	CCI	20.6	18.2	6.7	3.9	36.98	47.46
CHO@Ar	18.2	14.0	18.4	12.4	33.72	29.018	F	0.1	0.1	0.0	4.6	14.84	19
соон	17.9	13.2	11.8	22 .1	44.37	45.018	CI	16.4	8.7	0.0	0.0	27.46	35.45
COOH@A	19.4	15.1	11.4	1 <mark>9.4</mark>	43.99	45.018	Br	19.8	10.2	7.1	6.3	36.43	79.9
COO	19.0	15.2	8.1	10.8	37.02	44.01	I	21.0	11.4	5.6	5.2	47.22	126.9
COO_R	19.3	14.2	25.9	11.6	38.47	44.01	Si	10.7	11.3	0.0	0.0	29.98	28.09
COO@Ar	17.6	14.3	13.6	6.3	37.69	44.01	Р	17.7	13.7	6.5	0.0	30.30	30.97
NH2	17.7	12.1	10.2	17.1	22.95	16.026	В	20.5	18.8	0.1	0.0	13.34	10.81
NH2@Ar	20.6	16.2	13.7	24.2	22.30	16.026							

Solvent Size Effect

As the molecule becomes larger, the surface area decreases.

 $\delta_{\mbox{\scriptsize Dvdw}}$ decreases as the size becomes larger

Small Solvent's specific Nature

16.3 (9.06, 13.49)

Tridecanoic acid

New HSP Distance

Distance₁₉₆₇={**4.0***(δ_{D1} - δ_{D2})²+(δ_{P1} - δ_{P2})²+(δ_{H1} - δ_{H2})²}^{0.5}

 $\mathsf{Distance}_{2017} = \{ (\delta_{\mathsf{Dvdw1}} - \delta_{\mathsf{Dvdw2}})^2 + (\delta_{\mathsf{Dfg1}} - \delta_{\mathsf{Dfg2}})^2 + (\delta_{\mathsf{P1}} - \delta_{\mathsf{P2}})^2 + (\delta_{\mathsf{H1}} - \delta_{\mathsf{H2}})^2 \}^{0.5}$

Polymer 88 solvents

$\delta_{\rm D}$ determination

Official δ_D is not always "Correct Answer".

Cross Check with independent method.

Polarizability Method

Calculated 4,000+ molecules with MOPAC 2012 and obtained Polarizability values.

 δ_{D} = ((Polarizability*1000-719.94)/ (0.3231*MVol))^{0.5}

Polarizability Method Refractive Index method

Almost parallel

δ_P determination

Official δ_{P} is not always "Correct Answer".

Cross Check with independent method.

Dipole moment method

YMB method

qEQ Charge Calculation Method

Cross Checking for δ_P

Amine

Ester

Alcohol

Dipole Charge Y-MB

Ketone

Temperature Dependency of HSP

Original Scheme

New Scheme

 $d\delta_{\rm D}/dT = -1.25\alpha\delta_{\rm D}$

 $d\delta_{\rm P}/dT = -0.5\alpha\delta_{\rm P}$

 $d\delta_{\rm H}/dT = -\delta_{\rm H}(1.22 \times 10^{-3} + 0.5\alpha)$

 $δ_{\rm D}({\rm T}) = ({\rm F}_{\rm dD}({\rm T})/{\rm Mvol}({\rm T}))^{0.5}$ $\delta_{\rm P}({\rm T}) = ({\rm F}_{\rm dP}({\rm T})/{\rm Mvol}({\rm T}))^{0.5}$ $\delta_{\rm H}({\rm T}) = ({\rm F}_{\rm dH}({\rm T})/{\rm Mvol}({\rm T}))^{0.5}$ α: Coefficient of thermal expansion

How can we determine $F_{dD}(T)$, $F_{dP}(T)$, $F_{dH}(T)$?

CST

Need other data at different temperature .

Corresponding State Theory(CST)

Properties@T_{1mmHg} / Properties @ T_b \rightarrow Identical

Verification of Temperature dependency

Conclusion

Built Functional Group Contribution Method 2017

Need to split δ_{D} term to δ_{Dvdw} and $~\delta_{Dfg}$ Small Solvent's specific Nature

Built new HSP Distance Scheme 2017 $\{(\delta_{Dvdw1}-\delta_{Dvdw2})^2 + (\delta_{Dfg1}-\delta_{Dfg2})^2 + (\delta_{P1}-\delta_{P2})^2 + (\delta_{H1}-\delta_{H2})^2\}^{0.5}$ Without factor 4

Building new HSP Official Values 2017 Cross Checking Temperature dependent HSP

The new name?

Please think of new name of HSP!

In Japan, I used HSP² Hansen-Hiroshi-Steven Solubility Parameters for Prediction Keep brand identity of "HSP"

Network searchable.

Image of new and powerfulness.

Expanded HSP

EHSP: English for High School Preparation, Enhanced High Speed Processor Equine Health Studies Program

Will release within this year (?)

Temperature

Revise policy

1. For 14K compounds, I ranked each molecule.

Category 1: I checked Barton's Book "CRC, Hand Book of Solubility Parameters and other cohesion Parameters" and select 206 solvents. Category 2: I checked HSPiP examples and select 83 solvents

Category 1-2 solvents HSP are widely used and I do not revise these HSP.

Category 3: I checked Dipper801 database and extract SP values and Heat of vaporization at 25°C.

For category 3, If Official totHSP in HSPiP are good agreement (415 solvents)

Category 4: YMB calculation result of totHSP and Dipper values are good agreement, l import YMB result. (1325 solvents)
Category 5: Very simple mono-functional solvents. (1572 solvents)
Category 6: Halogenated solvents or other important 378 solvents
Category 7: Important flavor 561 compounds
Category 8: Not above.

1-2 I never change. Others I revised.

HSP to HSP² δ_D

HSP to HSP² δ_P

HSP to HSP² δ_{H}

In HSPiP

version 5.1 ? 6.0 ?

FG interactions

More Large FG

More Dynamic feature of Molecule

Cyclohexane Boat-Chair Conformation change

Change Volume $\Delta \delta_{T}$ Induced Charge $\Delta \delta_{P}$ Kill Hydrogen Bond $\Delta \delta_{H}$

Even Hydrocarbons have δ_{Dfg} Fluorocarbons have little δ_{Dfg}

100,000 times per second at room temp.

Equivalent Alkane Carbon Number (EACN)

EACN=8.0 δDvdw=9.1

Some of the Metal Fluorides become Liquid with only VDW force

From left NF3, SiF4, PF5, SF6, AsF5, SeF6, WF6, ReF6, OsF6, IrF6, NpF6, UF6

These Metal Fluorides may have no Catalytic activity