HSP50 Conference 2017

New Directions in HSP Part 2 Donor/Acceptor and δ_{Net}

HSPiP Dr. Hiroshi Yamamoto 2017.4.5

Even same Molar Volume, ..

Associative liquid

Regular Solution

Large	Ηv	Small
High	Boiling Point	Low
High	Density	Low
High	Viscosity	Low

Correlation between BP and Hv

Associative liquid

Regular Solution

300

 $H_v = 85*BP$ NBE=0 ??

400

Boiling Point [K]

500

HydroCarbon

Ester

A Nitrile

X Ketone

Amide

700

800

xs

600

Trouton Rule

Abnormality of Small Carboxylic Acid

Evaporate as Dimer

Regular Solution and the Network

Network Energy(E_{Net}), $\delta_{Net} \& \delta_{Reg}$

 $H_{v298} = 85*BP + E_{Net}$ $\delta_{T} = ((H_{v298} - RT)/MVol)^{0.5}$

Even Regular Solution

$$\delta_{T^{2}} = \delta_{D}^{2} + \delta_{P}^{2} + \delta_{H}^{2}$$
have network
$$E_{Net} = \delta_{T}^{2} MVol + 8.31^{*}298.15 - 85^{*}BP$$

$$\delta_{Net} = (E_{Net}/MVol)^{0.5}$$

$$HSP$$

$$MVol$$

$$BP$$

$$\delta_{Net}$$
is the parameter that has hidden for 50 years!

HSP as Molecule

[15.8, 3.7, 6.3]	δ_{T}	δ_{Reg}	δ_{Net}
MVol=132.6, BP=399.26K	17.4	15.4	8.1
[15.7 <i>,</i> 3.9 <i>,</i> 5.9] MVol=102.7 <i>,</i> BP=336.15K	17.2	15.9	6.5

 H_3C H_2 C^-C CH_3 H_2

[16.2 <i>,</i> 3.3 <i>,</i> 6.4] MVol=241.5 <i>,</i>	17.7	14.0	10.9
BP=585.25K		<u> </u>	

Effect on Solubility ?

Does Similar HSP mean Similar Solubility ?

Similar HSP (and δ_T)

Miscibility of Solvents

Liquid Crystal

No.	Х	Y	Z	Α	相転移点(*C)	Δε	Δn	Y1	ref.
7	F	F	Н	\bigcirc	C 44.2 N 124.3 I	5.8	0.104	140	17)
8	F	F	F	\bigcirc	C 64.7 N 93.7 I	8.3	0.073	171	20)
9	F	F	F	\bigcirc	C 40.7 (N 33.2) I	12.8	0.137	143	20)
10	H	OCF3	н	\bigcirc	C 39B69 N154 I	6.9	0.087	142	21)
11	F	OCF3	н	\bigcirc	C 46 N 1301	9.0	0.089	200	21)
12	F	OCF3	F	\bigcirc	C 66 N 118.3 1	10.5	0.083	279	21)
13	F	F	F	$\langle \rangle$	C 74 (N 51.2)I	17.0	0.068	201	21)

相転移点を除き物性値はフッ森系母波晶からの外押値

δ_{Net} and Viscosity

As δ_{Net} increase, log Viscosity also increase.

O2 permeability through polymer

Name	logPO2
Polyethylene	3.193124598
Polypropylene	2.892094603
Poly(vinyl alcohol)	-2.397940009
Polyoxyethylene	2.722633923
Poly(vinyl fluoride)	2.621176282
Polyacrylonitrile	-1
Poly(cis-1,4-butadiene)	3.523746467
Poly(vinyl chloride)	0.977723605
Polymethacrylonitrile	-0.301029996
Poly(vinyl acetate)	1.77815125
Poly(methyl acrylate)	2.096910013
Polychloroprene	2.812913357
Poly(vinylidene chloride)	0.113943352
Polytetrafluoroethylene	2.84509804
Poly(methyl methacrylate)	1.230448921
Polystyrene	2.653212514
Poly(ethylene terephthalate)	0.954242509

Vapor Pressure of Solvents

 $\log P(mmHg) = A - B/(T^{\circ}C + C)$

Antoine Parameters A, B, C

 δ_{Net} to Antoine C

 ${\delta_{\text{Reg}}}^2*Mvol$ to Antoine B

Extra Energy to Break Network

Small Antoine C means low Vapor Pressure Increase Boiling Point with FGs

Large Antoine B means low Vapor Pressure

Surface Tension

Macleod-Sugden method

γ^{1/4} = P (Liquid Density - Gas Density) / Molecular Weight P:Parachor

$$P=(\delta_{Reg}^{2} * MVol^{13/3}/13.9)^{1/4}$$

Gutmann Donor/Acceptor

Gutmann DN (Donor Number)

Base: + SbCl₅
$$\xrightarrow{-\Delta H}$$
 B \rightarrow SbCl₅

Gutmann AN (Acceptor Number)

 $(CH_3CH_2)_3P=O + Acid \longrightarrow (CH_3CH_2)_3P=O \rightarrow A$ ³¹P-NMR Chemical shift

Lewis Electron Pair Donor / Electron Pair Acceptor

BASE

ACID

Prediction of Lewis Electron Donor(ED) / Electron Acceptor(EA)

Gutmann DN, AN are measured at very dilute 1:1 complex. Functional Group Contribution method: Yamamoto ED, EA

Multi-Functional Group Molecule problems exist, but we can obtain Y-ED, Y-EA from only molecular structure.

Electron Donor / Acceptor

Network re-arrangement

Y-ED1=11.5 Y-EA1=45.6 Y-ED2=12.7 Y-EA2=23.1

2*(Y-ED1 – Y-ED2)*(Y-EA1 – Y-EA2) =2* (11.5 – 12.7)*(45.6 – 23.1) = **-46** Large Stabilization

2*(Y-ED1 – Y- ED2)*(Y-EA1 – Y-EA2) = 2*(10.1 – 12)*(4.4 – 5.0) = **+2.3**

Solubility of Oleic Acid

Abnormal solubility of Alcohols

Alcohol solvents: Long HSP Distance but dissolve well.

Distance₂₀₁₇ wA/B = $\{(\delta_{\text{Dvdw1}}-\delta_{\text{Dvdw2}})^2 + (\delta_{\text{Dfg1}}-\delta_{\text{Dfg2}})^2 + (\delta_{\text{P1}}-\delta_{\text{P2}})^2 + (\delta_{\text{Hacid1}}-\delta_{\text{Hacid2}})^2 + (\delta_{\text{Hbase1}}-\delta_{\text{Hbase2}})^2\}^{0.5}$

Distance₂₀₁₇ wED/EA = { $(\delta_{Dvdw1}-\delta_{Dvdw2})^{2} + (\delta_{Dfg1}-\delta_{Dfg2})^{2} + (\delta_{P1}-\delta_{P2})^{2} + 4.18*(Y-ED1 - Y-ED2)(Y-EA1 - Y-EA2)/MVol}^{0.5}$

Donor / Acceptor re-arrangement

Hexane/Water Extraction

Multi Functional Groups problem

Paracetamol

Donor / Acceptor re-arrangement should be taken into account one by one

Vapor-Liquid Equilibrium (VLE)

Vapor

Liquid

Liquid

Liquid composition ≠ Vapor Composition

Liquid

Yamamoto-T_{ij50} Parameter

 $Y-T_{ij50} = 1 - (T_{av50} - T_{Exp50})/100$ $Tb_{mix} change, Hv_{mix} also change$

I have determined 5000+ pair of Y-T_{ij50}

List of Y-T_{ij50}

Large Y-T _i	_{ij50} pair Acid – Ba	ase Pair	Small Y-T _{ij50} pair			
Compound-A	Compound-B	Y−Tij50	Compound-A	Compound-B	Y−Tij50	
2-Methylpyridine	Formic acid	1.40	Acetamide	octane	0.53	
Acetic Acid	Pyridine	1.22	Acetamide	1–Iodo–2–Methylpropane	0.50	
Acetic Acid	2-Methylpyridine	1.21	Acetamide	tetrachloroethylene	0.49	
Acetic acid	4-Methylpyridine	1.21	alpha-pinene	Methanol	0.56	
Acetic Acid	N,N'-dimethylacetamide	1.21	Ethylene glycol	Toluene	0.56	
Acetic acid	3-Methylpyridine	1.20	Ethylene Glycol	Dibenzyl Ether	0.56	
acetonitrile	3-methylbutyl butanoate	1.24	Ethylene Glycol	1-Bromonaphthalene	0.55	
acetonitrile	phenetole	1.21	Ethylene Glycol	1,2-Diphenylethane	0.55	
acetonitrile	isobutyl isopentanoate	1.21	Ethylene Glycol	Benzyl Phenyl Ether	0.54	
Phenol	2,4-Dimethylpyridine	1.21	Ethylene Glycol	Fluorene	0.49	
Phenol	4–Methylpyridine	1.21	Ethylene Glycol	Stilbene	0.45	
Triethyl amine	Acetic acid	1.42	Glycerol	Toluene	0.56	
trimethylamine	Formic acid	1.25	Glycerol	gamma-terpinene	0.47	

Glycerol

Methanol

Methanol

φ: Volume Fraction

Polar – non Polar pair

0.46

0.55

0.54

Indene

2-Pinene (dl)

Camphene

Network re-arrangement

Y-ED1=12.0 Y-EA1=5.0 Y-ED2=3.5 Y-EA2=19.4

2*(Y-ED1 – Y-ED2)*(Y-EA1 – Y- EA2) =2* (12.0 – 3.5)*(5 – 19.4) = -244.8

Large Stabilization

Y-ED1=10.1 Y-EA1=4.4 Y-ED2=12.0 Y-EA2=5.0

2*(Y-ED1 – Y-ED2)*(Y-EA1 – Y-EA2) = 2*(10.1 – 12)*(4.4 – 5.0) = **+2.3**

Y-T_{ij50} Parameter for Acetone

δ_{μ} Electron Pair Donor / Acceptor $δ_{H}$ Y-ED Y-EA $δ_{Hedo}$ $δ_{Heac}$ 6.3 15 7.3 5.23 2.95 H_2 H_2 C C C CH_3 H_3 CH₃ 5.9 35.7 7.1 5.98 H_3 1.17 6.4 12.6 47.4 1.69 6.35 per Volume per mol $\delta_{\text{Hedo}}: \delta_{\text{Heac}} = \text{Y-ED}: \text{Y-EA}$ $\delta_{\rm H}^2 = 2^* \delta_{\rm Hedo}^* \delta_{\rm Heac}$

Heat of Sorption, Wetting

Kansai Paint:

Atsunao Hiwara and Toshihide Fujitani, Research of Paint No.132 Apr. 1999

Electron Donor / Acceptor for δ_{Net}

Y-ED	Y-EA	δ_{Net}	δ_{NetED}	δ_{NetEA}
15	7.3	8.1	8.46	4.77
35.7	7.1	6.5	8.67	1.7
12.6	47.4	10.9	4.56	17.17

 $δ_{\text{NetED}}: \delta_{\text{NetEA}} = Y-ED: Y-EA$ $\delta_{\text{NET}}^2 = 2*\delta_{\text{NetED}}*\delta_{\text{NetEA}}$

Network re-arrangement

Y-ED1=12.0 Y-EA1=5.0 Y-ED2=3.5 Y-EA2=19.4

2*(Y-ED1 – Y-ED2)*(Y-EA1 – Y- EA2) = 2* (12.0 – 3.5)*(5 – 19.4) = -244.8

Large Stabilization

 $2*(d_{Net}ED1 - d_{Net}ED2)*(d_{Net}EA1 - d_{Net}EA2)$ = 2*(4.48 - 1.29)*(2.62 - 29.78) = -173.3

$$\begin{array}{c} HSP_{1967} \ to \ HSP^{2}_{2017} \\ HSP_{1967} & [\delta D, \ \delta P, \ \delta H] = [15.8, \ 3.7, \ 6.3] \quad \delta_{T} = 17.4 \\ MVol = 132.6, \\ BP = 399.26 K \\ HSP^{2}_{2017} \qquad \delta_{T} = 17.4 \\ & \delta_{D} = 15.9 \\ (\delta_{Dvdw}, \ \delta_{Dfg}) = (10.0, \ 12.3) \\ & \delta_{p} = 4.5 \\ (\delta_{Pedo}, \ \delta_{Peac}) = (4.2, \ 2.4) \\ & \delta_{H} = 6.0 \\ (\delta_{Hedo}, \ \delta_{Heac}) = (5.7, \ 3.2) \\ (\delta_{Hacid}, \ \delta_{HBase}) = (0.5, \ 6.1) \\ \end{array}$$

Conclusion

$$\begin{split} \delta_{T}^{2} &= \delta_{D}^{2} + \delta_{P}^{2} + \delta_{H}^{2} \\ \delta_{T}^{2} &= \delta_{Reg}^{2} + \delta_{Net}^{2} \\ \text{Great help to understand Thermo-Chemical Properties} \\ \text{Yamamoto Electron Donor /Electron Acceptor} & \delta_{Net} \\ \delta_{Net} \\ \begin{array}{c} \text{Hydrogen Bond Network} \\ \text{Coordination Bond Network} \end{array} \\ \begin{array}{c} \text{Hard to Assign to} \\ \delta_{H}, \delta_{P} \end{array} \\ \begin{array}{c} \text{Donor / Acceptor re-arrangement} \\ (Y-ED1 - Y-ED2)^{*}(Y-EA1 - Y-EA2) \\ \end{array} \end{split}$$

 $\delta_{\rm H}^2 = 2^* \delta_{\rm Hedo}^* \delta_{\rm Heac}$ so on

New breakup of $\delta_{H_{r}} \delta_{P_{r}} \delta_{Net}$

The new name?

Please think of new name of HSP!

In Japan, I used HSP² Hansen-Hiroshi-Steven Solubility Parameters for Prediction Keep brand identity of "HSP"

Network searchable.

Image of new and powerfulness.

Expanded HSP

EHSP: English for High School Preparation, Enhanced High Speed Processor Equine Health Studies Program

From where you want to view of molecule

The "Front" is depend on each Researcher!

Temperature

Super Critical CO2 Solubility

HPLC retention time

Name	RT		
oxalic acid	3.068		
L-tartaric acid	3.579		
formic acid	3.831		
L-malic acid	4.597		
L-ascorbic acid	5.002		
lactic acid	5.622		
acetic acid	5.967		
maleic acid	7.191		
citric acid	8.008		
succinic acid	9.279		
fumaric acid	10.475		
acrylic acid	12.471		
propionic acid	14.53		
glutaric acid	19.278		
itaconic acid	23.037		

Critical Point

At Critical Point (Tc, Pc, Vc)

Heat of Vaporization = 0

All HSP are 0

All the Network Energy disappear at $\rm T_{\rm C}$

MVol@BP/Vc = 0.373

Network Energy

Permanent Charge

δ+ δ-/ δδ+

Classic Hydrogen Bond

This type interaction should be assign to $\delta P(water=16)$.

Coordination bond Network

Quantum Resonance Hydrogen Bond

